http://www.oldrazor.com

上海光机所在镁硅掺杂Ce:YAG荧光陶瓷研究方面取

  作为国家在科学技术方面的最高学术机构和全国自然科学与高新技术的综合研究与发展中心,建院以来,中国科学院时刻牢记使命,与科学共进,与祖国同行,以国家富强、人民幸福为己任,人才辈出,硕果累累,为我国科技进步、经济社会发展和国家安全做出了不可替代的重要贡献。/ 更多简介 +

  中国科学技术大学(简称“中科大”)于1958年由中国科学院创建于北京,1970年学校迁至安徽省合肥市。中科大坚持“全院办校、所系结合”的办学方针,是一所以前沿科学和高新技术为主、兼有特色管理与人文学科的研究型大学。

  中国科学院大学(简称“国科大”)始建于1978年,其前身为中国科学院研究生院,2012年更名为中国科学院大学。国科大实行“科教融合”的办学体制,与中国科学院直属研究机构在管理体制、师资队伍、培养体系、科研工作等方面共有、共治、共享、共赢,是一所以研究生教育为主的独具特色的研究型大学。

  上海科技大学(简称“上科大”),由上海市人民政府与中国科学院共同举办、共同建设,2013年经教育部正式批准。上科大秉持“服务国家发展战略,培养创新创业人才”的办学方针,实现科技与教育、科教与产业、科教与创业的融合,是一所小规模、高水平、国际化的研究型、创新型大学。

  近日,中国科学院上海光学精密机械研究所微纳光电子功能材料实验室与复旦大学合作,在镁硅掺杂的Ce:YAG荧光陶瓷的Ce3+离子发光红移机理和荧光性能研究方面取得新进展。相关研究成果发表在《合金和化合物杂志》(Journal of Alloys and Compounds)。

  随着高功率照明和显示行业的不断发展,Ce:YAG荧光陶瓷因其高光效和优异的热力学性能,已成为国际研究的焦点和热点。但由于Ce3+在YAG晶格中受蓝光激发后的发射波段位于535nm附近,混合而成的白光色温较高,显色性能难以满足高质量照明的要求。而镁硅掺杂的Ce:YAG荧光陶瓷相较于纯Ce:YAG荧光陶瓷具有更多的红光成分,因而可以与蓝光LED组合,混合出具有更低色温和更高显色指数的高质量暖白光。由于Mg2+半径介于Y3+,Al3+之间,在两种位置都可替代,而不同的掺杂位置对Ce:YAG的发光性能和红移机理的影响至今尚未得到报道。

  在该研究中,科研人员针对Mg2+在YAG晶格中的正十二面体中心位的Y3+替代和正八面体中心位的Al3+替代设计了两组实验以探究其对性能的影响。通过Rietveld精修和拉曼谱测试发现,晶格常数和拉曼峰的变化可以归因于Mg-O键键长和键强的不同。而Mg2+在不同格位的掺杂导致的发光红移程度不同则可以通过位形坐标解释,而其红移的主要原因可归结于斯托克斯位移。

  近日,中国科学院上海光学精密机械研究所微纳光电子功能材料实验室与复旦大学合作,在镁硅掺杂的Ce:YAG荧光陶瓷的Ce3+离子发光红移机理和荧光性能研究方面取得新进展。相关研究成果发表在《合金和化合物杂志》(Journal of Alloys and Compounds)。

  随着高功率照明和显示行业的不断发展,Ce:YAG荧光陶瓷因其高光效和优异的热力学性能,已成为国际研究的焦点和热点。但由于Ce3+在YAG晶格中受蓝光激发后的发射波段位于535nm附近,混合而成的白光色温较高,显色性能难以满足高质量照明的要求。而镁硅掺杂的Ce:YAG荧光陶瓷相较于纯Ce:YAG荧光陶瓷具有更多的红光成分,因而可以与蓝光LED组合,混合出具有更低色温和更高显色指数的高质量暖白光。由于Mg2+半径介于Y3+,Al3+之间,在两种位置都可替代,而不同的掺杂位置对Ce:YAG的发光性能和红移机理的影响至今尚未得到报道。

  在该研究中,科研人员针对Mg2+在YAG晶格中的正十二面体中心位的Y3+替代和正八面体中心位的Al3+替代设计了两组实验以探究其对性能的影响。通过Rietveld精修和拉曼谱测试发现,晶格常数和拉曼峰的变化可以归因于Mg-O键键长和键强的不同。而Mg2+在不同格位的掺杂导致的发光红移程度不同则可以通过位形坐标解释,而其红移的主要原因可归结于斯托克斯位移。

  图1 MYASG和YMASG的发射与激发谱(λex=460,λem=550nm)

郑重声明:本文版权归原作者所有,转载文章仅为传播更多信息之目的,如作者信息标记有误,请第一时间联系我们修改或删除,多谢。